
Use case modeling is an accepted and
widespread technique to capture the

business processes and requirements of a
software application project. Since use
cases provide the functional scope of the
project, analyzing their contents provides
valuable insight into the effort and size
needed to design and implement a project.
In general, projects with large, complicat-
ed use cases take more effort to design
and implement than small projects with
less complicated use cases. Moreover, the
time to complete the project is affected by
the following:
• The number of steps to complete the

use case.
• The number and complexity of the

actors.
• The technical requirements of the use

case such as concurrency, security, and
performance.

• Various environmental factors such as
the development teams’ experience
and knowledge.
An estimation method that took into

account the above factors early in a pro-
ject’s life cycle, and produced an estimate
within 20 percent of the actual comple-
tion time would be very helpful for project
scheduling, cost, and resource allocation.

The Use Case Points (UCP) method
provides the ability to estimate the man-
hours a software project requires from its

use cases. Based on work by Gustav
Karner [1], the UCP method analyzes the
use case actors, scenarios, and various
technical and environmental factors and
abstracts them into an equation. Readers
familiar with Allan Albrecht’s “Function
Point Analysis” [2] will recognize its influ-
ence on UCP; function point analysis
inspired UCP.

The UCP equation is composed of
three variables:
1. Unadjusted Use Case Points (UUCP).
2. The Technical Complexity Factor

(TCF).
3. The Environment Complexity Factor

(ECF).
Each variable is defined and computed
separately using weighted values, subjec-
tive values, and constraining constants.
The weighted values and constraining
constants were initially based on Albrecht,
but subsequently modified by people at
Objective Systems, LLC, based on their
experience with Objectory – a methodology
created by Ivar Jacobson for developing
object-oriented applications [3]. The sub-
jective values are determined by the devel-
opment team based on their perception of
the project’s technical complexity and effi-
ciency.

Additionally, when productivity is
included as a coefficient that expresses
time, the equation can be used to estimate

the number of man-hours needed to com-
plete a project. Here is the complete equa-
tion with a Productivity Factor (PF) included:

UCP = UUCP * TCF * ECF * PF

The necessary steps to generate the esti-
mate based on the UCP method are the
following:
1. Determine and compute the UUCPs.
2. Determine and compute the TCFs.
3. Determine and compute the ECFs.
4. Determine the PF.
5. Compute the estimated number of

hours.

Sample Case Study
In the sections that follow, the UCP
method is retroactively applied to a Web
application developed by the author. This
after-the-fact approach provides a practi-
cal way to establish a baseline PF for pro-
jects already completed. As described
later, the PF helps determine the number
of man-hours needed to complete the
project.

UUCPs
UUCPs are computed based on two com-
putations:
1. The Unadjusted Use Case Weight

(UUCW) based on the total number of
activities (or steps) contained in all the
use case scenarios.

2. The Unadjusted Actor Weight (UAW)
based on the combined complexity of
all the actors in all the use cases.

UUCW
The UUCW is derived from the number
of use cases in three categories: simple,
average, and complex (see Table 1). Each use
case is categorized by the number of steps
its scenario contains, including alternative
flows.

Keep in mind the number of steps in
a scenario affects the estimate. A large
number of steps in a use case scenario will
bias the UUCW toward complexity and
increase the UCPs. A small number of
steps will bias the UUCW toward simplic-
ity and decrease the UCPs. Sometimes, a

Project Estimation With Use Case Points

Software developers frequently rely on use cases to describe the business processes of object-oriented projects. Since use cases
consist of the strategic goals and scenarios that provide value to a business domain, they can also provide insight into a pro-
ject’s complexity and required resources. This article provides an introduction to the Use Case Points method that employs a
project’s use cases to produce a reasonable estimate of a project’s complexity and required man-hours.

Roy K. Clemmons
Diversified Technical Services, Inc.

18 CROSSTALK The Journal of Defense Software Engineering February 2006

Use Case Category Description Weight

Simple Simple user interface. Touches only a

single database entity. Its success

scenario has three steps or less. Its

implementation involves less than

five classes.

5

Average More interface design. Touches two

or more database entities. Between

four and seven steps. Its

implementation involves between

five and 10 classes.

10

Complex Complex user interface or

processing. Touches three or more

database entities. More than seven

steps. Its implementation involves

more than 10 classes.

15

Table 1: Use Case Categories

Table 1: Use Case Categories

 



Project Estimation With Use Case Points

February 2006 www.stsc.hill.af.mil 19

large number of steps can be reduced
without affecting the business process.

The UUCW is calculated by tallying
the number of use cases in each category,
multiplying each total by its specified
weighting factor, and then adding the
products. For example, Table 2 computes
the UUCW for the sample case study.

UAW
In a similar manner, the Actor Types are
classified as simple, average, or complex as
shown in Table 3.

The UAW is calculated by totaling the
number of actors in each category, multi-
plying each total by its specified weighting
factor, and then adding the products.
Table 4 computes the UAW for the sample
case study.

The UUCP is computed by adding the
UUCW and the UAW. For the data used in
Tables 2 and 4, the UUCP = 210 + 12 = 222.

The UUCP is unadjusted because it does
not account for the TCFs and ECFs.

TCFs 
Thirteen standard technical factors exist
to estimate the impact on productivity that
various technical issues have on a project
(see Table 5, page 20). Each factor is
weighted according to its relative impact.

For each project, the technical factors
are evaluated by the development team
and assigned a perceived complexity value
between zero and five. The perceived
complexity factor is subjectively deter-
mined by the development team’s percep-
tion of the project’s complexity – concur-
rent applications, for example, require
more skill and time than single-threaded
applications. A perceived complexity of 0
means the technical factor is irrelevant for
this project, 3 is average, and 5 is strong
influence. When in doubt, use 3.

Each factor’s weight is multiplied by its
perceived complexity factor to produce
the calculated factor. The calculated factors
are summed to produce the Technical Total
Factor. Table 6 (see page 20) calculates the
technical complexity for the case study.

Two constants are computed with the
Technical Total Factor to produce the
TCF. The constants constrain the effect
the TCF has on the UCP equation from a
range of 0.60 (perceived complexities all
zero) to a maximum of 1.30 (perceived
complexities all five).

TCF values less than one reduce the
UCP because any positive value multiplied
by a positive fraction decreases in magni-
tude: 100 * 0.60 = 60 (a reduction of 40
percent).

TCF values greater than one increase
the UCP because any positive value multi-

plied by a positive mixed number increas-
es in magnitude: 100 * 1.30 = 130 (an
increase of 30 percent).

Since the constants constrain the TCF from a
range of 0.60 to 1.30, the TCF can impact the
UCP equation from - 40 percent (.60) to a max-
imum of +30 percent (1.30).

For the mathematically astute, the
complete formula to compute the TCF is:

TCF = C1+ C2

13

∑
i=1
Wi * F1

where,

Constant 1 (C1) = 0.6
Constant 2 (C2) = .01
W = Weight
F = Perceived Complexity Factor

For the rest of us, a more digestible equa-
tion is:

TCF = 0.6 + (.01 * Technical Total Factor)

For Table 6, the TCF = 0.6 + (0.01 * 19.5)
= 0.795, resulting in a reduction of the UCP by
20.5 percent.

ECFs
The ECF (see Table 7, page 21) provides a
concession for the development team’s
experience. More experienced teams will
have a greater impact on the UCP compu-
tation than less experienced teams.

The development team determines
each factor’s perceived impact based on its
perception the factor has on the project’s

Table 2: Computing UUCW

Table 1: Use Case Categories

Use Case
Type

Description Weight Number
of Use
Cases

Result

Simple Simple user interface. Touches only a

single database entity. Its success

scenario has three steps or less. Its

implementation involves less than five

classes.

5 7 35

Average More interface design. Touches two or

more database entities. Between four

and seven steps. Its implementation

involves between five and 10 classes.

10 13 130

Complex Complex user interface or processing.

Touches three or more database

entities. More than seven steps. Its

implementation involves more than 10

classes.

15 3 45

Total UUCW 210

Table 2: Computing UUCW

Actor Type Description Weight

Simple The actor represents another system with a defined

application programming interface.

1

Average The actor represents another system interacting through a

protocol, like Transmission Control Protocol/Internet

Protocol.

2

Complex The actor is a person interacting via a graphical user

interface.

3

Table 3: Actor Classifications

Actor
Type

Description Weight Number
of
Actors

Result

Simple The actor represents another system

with a defined application

programming interface.

1 0 0

Average The actor represents another system

interacting through a protocol, like

Transmission Control Protocol/Internet

Protocol.

2 0 0

Complex The actor is a person interacting via an

interface.

3 4 12

Total UAW 12

Table 4: Computing UAW

Use Case Category Description Weight

Simple Simple user interface. Touches only a

single database entity. Its success

scenario has three steps or less. Its

implementation involves less than

five classes.

5

Average More interface design. Touches two

or more database entities. Between

four and seven steps. Its

implementation involves between

five and 10 classes.

10

Complex Complex user interface or

processing. Touches three or more

database entities. More than seven

steps. Its implementation involves

more than 10 classes.

15

Table 1: Use Case Categories

Use Case
Type

Description Weight Number
of Use
Cases

Result

Simple Simple user interface. Touches only a

single database entity. Its success

scenario has three steps or less. Its

implementation involves less than five

classes.

5 7 35

Average More interface design. Touches two or

more database entities. Between four

and seven steps. Its implementation

involves between five and 10 classes.

10 13 130

Complex Complex user interface or processing.

Touches three or more database

entities. More than seven steps. Its

implementation involves more than 10

classes.

15 3 45

Total UUCW 210

Table 2: Computing UUCW

Actor Type Description Weight

Simple The actor represents another system with a defined

application programming interface.

1

Average The actor represents another system interacting through a

protocol, like Transmission Control Protocol/Internet

Protocol.

2

Complex The actor is a person interacting via a graphical user

interface.

3

Table 3: Actor Classifications

Actor
Type

Description Weight Number
of
Actors

Result

Simple The actor represents another system

with a defined application

programming interface.

1 0 0

Average The actor represents another system

interacting through a protocol, like

Transmission Control Protocol/Internet

Protocol.

2 0 0

Complex The actor is a person interacting via an

interface.

3 4 12

Total UAW 12

Table 4: Computing UAW

Table 3: Actor Classifications

Use Case Category Description Weight

Simple Simple user interface. Touches only a

single database entity. Its success

scenario has three steps or less. Its

implementation involves less than

five classes.

5

Average More interface design. Touches two

or more database entities. Between

four and seven steps. Its

implementation involves between

five and 10 classes.

10

Complex Complex user interface or

processing. Touches three or more

database entities. More than seven

steps. Its implementation involves

more than 10 classes.

15

Table 1: Use Case Categories

Use Case
Type

Description Weight Number
of Use
Cases

Result

Simple Simple user interface. Touches only a

single database entity. Its success

scenario has three steps or less. Its

implementation involves less than five

classes.

5 7 35

Average More interface design. Touches two or

more database entities. Between four

and seven steps. Its implementation

involves between five and 10 classes.

10 13 130

Complex Complex user interface or processing.

Touches three or more database

entities. More than seven steps. Its

implementation involves more than 10

classes.

15 3 45

Total UUCW 210

Table 2: Computing UUCW

Actor Type Description Weight

Simple The actor represents another system with a defined

application programming interface.

1

Average The actor represents another system interacting through a

protocol, like Transmission Control Protocol/Internet

Protocol.

2

Complex The actor is a person interacting via a graphical user

interface.

3

Table 3: Actor Classifications

Actor
Type

Description Weight Number
of
Actors

Result

Simple The actor represents another system

with a defined application

programming interface.

1 0 0

Average The actor represents another system

interacting through a protocol, like

Transmission Control Protocol/Internet

Protocol.

2 0 0

Complex The actor is a person interacting via an

interface.

3 4 12

Total UAW 12

Table 4: Computing UAW

Table 4: Computing UAW



A New Twist on Today’s Technology

20 CROSSTALK The Journal of Defense Software Engineering February 2006

success. A value of 1 means the factor has
a strong, negative impact for the project; 3
is average; and 5 means it has a strong,
positive impact. A value of zero has no
impact on the project’s success. For exam-
ple, team members with little or no moti-
vation for the project will have a strong
negative impact (1) on the project’s suc-
cess while team members with strong
object-oriented experience will have a
strong, positive impact (5) on the project’s
success.

Each factor’s weight is multiplied by its
perceived impact to produce its calculated
factor. The calculated factors are summed
to produce the Environmental Total Factor.

Larger values for the Environment Total
Factor will have a greater impact on the UCP
equation.

Table 8 calculates the environmental
factors for the case study project.

To produce the final ECF, two con-
stants are computed with the
Environmental Total Factor. The con-

stants, “based on interviews with experi-
enced Objectory users at Objective
Systems” [1], constrain the impact the
ECF has on the UCP equation from 0.425
(Part-Time Workers and Difficult
Programming Language = 0, all other val-
ues = 5) to 1.4 (perceived impact all 0).
Therefore, the ECF can reduce the UCP
by 57.5 percent and increase the UCP by
40 percent.

The ECF has a greater potential impact on
the UCP count than the TCF. The formal
equation is:

ECF = C1+ C2

8

∑
i=1
Wi * F1

where,

Constant 1 (C1) = 1.4
Constant 2 (C2) = -0.03
W = Weight
F = Perceived Impact

Informally, the equation works out to be:

ECF = 1.4 + 
(-0.03 * Environmental Total Factor)

For the sample case study, the author’s
software development experience resulted
in a high ETF. The most significant nega-
tive factor was the author’s lack of experi-
ence in the application domain.

For Table 8, the ECF = 1.4 + (-0.03
*26) = 0.62, resulting in a decrease of the UCP
by 38 percent.

Calculating the UCP
As a reminder, the UCP equation is:

UCP = UUCP * TCF * ECF 

From the above calculations, the UCP
variables have the following values:

UUCP = 222
TCF = 0.795
ECF = 0.62

For the sample case study, the final UCP is
the following:

UCP = 222 * 0.795 * 0.62

UCP = 109.42 or 109 use case points

Note for the sample case study, the TCF and
ECF reduced the UUCP by approximately 49
percent (109/222*100).

By itself, the UCP value is not very
useful. For example, a project with a UCP
of 222 may take longer than one with a
UCP of 200, but we do not know by how
much. Another factor is needed to esti-
mate the number of hours to complete
the project.

PF
The PF is the ratio of development man-hours
needed per use case point. Statistics from past
projects provide the data to estimate the
initial PF. For instance, if a past project
with a UCP of 120 took 2,200 hours to
complete, divide 2,200 by 120 to obtain a
PF of 18 man-hours per use case point.

Estimated Hours
The total estimated number of hours for
the project is determined by multiplying
the UCP by the PF.

Total Estimate = UCP * PF 

If no historical data has been collected,
consider two possibilities:
1. Establish a baseline by computing the

UCP for previously completed pro-
jects (as was done with the sample case
study in this article).

Technical
Factor

Description Weight

T1 Distributed System 2

T2 Performance 1

T3 End User Efficiency 1

T4 Complex Internal Processing 1

T5 Reusability 1

T6 Easy to Install 0.5

T7 Easy to Use 0.5

T8 Portability 2

T9 Easy to Change 1

T10 Concurrency 1

T11 Special Security Features 1

T12 Provides Direct Access for Third Parties 1

T13 Special User Training Facilities Are Required 1

Table 5: Technical Complexity Factors

Technical
Factor

Description Weight Perceived
Complexity

Calculated
Factor
(Weight*
Perceived
Complexity)

T1 Distributed System 2 1 2

T2 Performance 1 3 3

T3 End User Efficiency 1 3 3

T4 Complex Internal Processing 1 3 3

T5 Reusability 1 0 0

T6 Easy to Install 0.5 0 0

T7 Easy to Use 0.5 5 2.5

T8 Portable 2 0 0

T9 Easy to Change 1 3 3

T10 Concurrency 1 0 0

T11 Special Security Features 1 0 0

T12 Provides Direct Access for Third Parties 1 3 3

T13 Special User Training Facilities Are Required 1 0 0

Technical Total Factor 19.5

Table 6: Calculating the Technical Total Factor

Environmental
Factor

Description Weight

E1 Familiarity With UML* 1.5

E2 Part-Time Workers -1

E3 Analyst Capability 0.5

E4 Application Experience 0.5

E5 Object-Oriented Experience 1

E6 Motivation 1

E7 Difficult Programming Language -1

E8 Stable Requirements 2

*Note: Karner's original factor, "Familiar with Objectory," was changed to reflect the popularity of UML.

Table 5: Technical Complexity Factors

Technical
Factor

Description Weight

T1 Distributed System 2

T2 Performance 1

T3 End User Efficiency 1

T4 Complex Internal Processing 1

T5 Reusability 1

T6 Easy to Install 0.5

T7 Easy to Use 0.5

T8 Portability 2

T9 Easy to Change 1

T10 Concurrency 1

T11 Special Security Features 1

T12 Provides Direct Access for Third Parties 1

T13 Special User Training Facilities Are Required 1

Table 5: Technical Complexity Factors

Technical
Factor

Description Weight Perceived
Complexity

Calculated
Factor
(Weight*
Perceived
Complexity)

T1 Distributed System 2 1 2

T2 Performance 1 3 3

T3 End User Efficiency 1 3 3

T4 Complex Internal Processing 1 3 3

T5 Reusability 1 0 0

T6 Easy to Install 0.5 0 0

T7 Easy to Use 0.5 5 2.5

T8 Portable 2 0 0

T9 Easy to Change 1 3 3

T10 Concurrency 1 0 0

T11 Special Security Features 1 0 0

T12 Provides Direct Access for Third Parties 1 3 3

T13 Special User Training Facilities Are Required 1 0 0

Technical Total Factor 19.5

Table 6: Calculating the Technical Total Factor

Environmental
F

Description Weight

Table 6: Calculating the Technical Total Factor



Project Estimation With Use Case Points

February 2006 www.stsc.hill.af.mil 21

2. Use a value between 15 and 30
depending on the development team’s
overall experience and past accom-
plishments (Do they normally finish
on time? Under budget? etc.). If it is a
brand-new team, use a value of 20 for
the first project.
After the project completes, divide the

number of actual hours it took to com-
plete the project by the number of UCPs.
The product becomes the new PF.

Since the sample case study presented in this
article actually took 990 hours to complete, the
PF for the next project is: 990/109 = 9.08

Industry Case Studies
From the time Karner produced his initial
report in 1993, many case studies have
been accomplished that validate the rea-
sonableness of the UCP method.

In the first case study in 2001, Suresh
Nageswaran published the results of a
UCP estimation effort for a product sup-
port Web site belonging to large North
American software company [4].
Nageswaran, however, extended the UCP
equation to include testing and project
management coefficients to derive a more
accurate estimate.

While testing and project management
might be considered non-functional
requirements, nevertheless they can signif-
icantly increase the length of the project.
Testing a Java 2 Enterprise Edition imple-
mentation, for example, may take longer
than testing a Component Object Model
component; it is not unusual to spend sig-
nificant time coordinating, tracking, and
reporting project status.

Nageswaran’s extensions to the UCP equa-
tion produced an estimate of 367 man-days, a
deviation of 6 percent of the actual effort of 390
man-days.

In a recent e-mail exchange with this
author, Nageswaran said he had also
applied the UCP method to performance
testing, unit-level testing, and white box
testing.

In the second case study, research sci-
entist Dr. Bente Anda [5] evaluated the
UCP method in case studies from several
companies and student projects from the
Norwegian University of Science and
Technology that varied across application
domains, development tools, and team size.
The results are shown in Table 9.

For the above studies, the average UCP esti-
mate is 19 percent; the average expert estimate is
20 percent.

Additionally, at the 2005 International
Conference on Software Engineering,
Anda, et al. [6] presented a paper that
described the UCP estimate of an incre-
mental, large-scale development project

that was within 17 percent of the actual
effort.

In the third case study, Agilis Solutions
and FPT Software partnered to produce
an estimation method, based on the UCP
method that produces very accurate esti-
mates. In an article that was presented at
the 2005 Object-Oriented, Programming,
Systems, Languages, and Applications
conference, Edward R. Carroll of Agilis
Solutions stated:

After applying the process across
hundreds of sizable (60 man-
months average) software projects,
we have demonstrated metrics that
prove an estimating accuracy of less
than 9 percent deviation from actu-
al to estimated cost on 95 percent

of our projects. Our process and
this success factor are documented
over a period of five years, and
across more than 200 projects. [7]

To achieve greater accuracy, the Agilis
Solutions/FPT Software estimation method
includes a risk coefficient with the UCP equation.

Conclusion
An early project estimate helps managers,
developers, and testers plan for the
resources a project requires. As the case
studies indicate, the UCP method can pro-
duce an early estimate within 20 percent
of the actual effort, and often, closer to
the actual effort than experts and other
estimation methodologies [7].

Moreover, in many traditional estima-

Table 7: Environmental Complexity Factors

Technical Tota

Table 6: Calculating the Technical Total Factor

Environmental
Factor

Description Weight

E1 Familiarity With UML* 1.5

E2 Part-Time Workers -1

E3 Analyst Capability 0.5

E4 Application Experience 0.5

E5 Object-Oriented Experience 1

E6 Motivation 1

E7 Difficult Programming Language -1

E8 Stable Requirements 2

*Note: Karner's original factor, "Familiar with Objectory," was changed to reflect the popularity of UML.

Environmental
Factor

Description Weight Perceived
Impact

Calculated Factor
(Weight*Perceived

Complexity)

E1 Familiarity With UML 1.5 5 7.5
E2 Part-Time Workers -1 0 0
E3 Analyst Capability 0.5 5 2.5
E4 Application Experience 0.5 0 0

E5 Object-Oriented Experience 1 5 5

E6 Motivation 1 5 5
E7 Difficult Programming Language -1 0 0
E8 Stable Requirements 2 3 6

Environmental Total Factor 26

Table 8: Calculating the Environmental Total Factor

Company Project Use Case
Estimate

Expert
Estimate

Actual
Effort

Deviation
Use Case
Estimate

Deviation
Expert
Estimate

Mogel A 2,550 2,730 3,670 -31% -26%

Mogel B 2,730 2,340 2,860 -5% -18%

Mogel C 2,080 2,100 2,740 -24% -23%

CGE and Y A 10,831 7,000 10,043 +8% -30%

CGE and Y B 14,965 12,600 12,000 +25% +5%

IBM A 4,086 2,772 3,360 +22% -18%
Student Project A 666 742 -10%
Student Project B 487 396 +23%

Student Project C 488 673 -25%

Table 9: Use Case Studies

Table 8: Calculating the Environmental Total Factor
Environmental

Factor
Description Weight Perceived

Impact
Calculated Factor
(Weight*Perceived

Complexity)

E1 Familiarity With UML 1.5 5 7.5
E2 Part-Time Workers -1 0 0
E3 Analyst Capability 0.5 5 2.5
E4 Application Experience 0.5 0 0

E5 Object-Oriented Experience 1 5 5

E6 Motivation 1 5 5
E7 Difficult Programming Language -1 0 0
E8 Stable Requirements 2 3 6

Environmental Total Factor 26

Table 8: Calculating the Environmental Total Factor

Company Project Use Case
Estimate

Expert
Estimate

Actual
Effort

Deviation
Use Case
Estimate

Deviation
Expert
Estimate

Mogel A 2,550 2,730 3,670 -31% -26%

Mogel B 2,730 2,340 2,860 -5% -18%

Mogel C 2,080 2,100 2,740 -24% -23%

CGE and Y A 10,831 7,000 10,043 +8% -30%

CGE and Y B 14,965 12,600 12,000 +25% +5%

IBM A 4,086 2,772 3,360 +22% -18%
Student Project A 666 742 -10%
Student Project B 487 396 +23%

Student Project C 488 673 -25%

Table 9: Use Case Studies

Table 9: Use Case Studies



A New Twist on Today’s Technology

22 CROSSTALK The Journal of Defense Software Engineering February 2006

tion methods, influential technical and
environmental factors are not given
enough consideration. The UCP method
quantifies these subjective factors into
equation variables that can be tweaked over
time to produce more precise estimates.

Finally, the UCP method is versatile
and extensible to a variety of development
and testing projects. It is easy to learn and
quick to apply.

The author encourages more projects
to use the UCP method to help produce
software on time and under budget.u

References
1. Karner, Gustav. “Resource Estimation

for Objectory Projects.” Objective
Systems SF AB, 1993.

2. Albrecht, A.J. Measuring Application
Development Productivity. Proc. of
IBM Applications Development
Symposium, Monterey, CA, 14-17 Oct.
1979: 83.

3. Jacobson, I., G. Booch, and J. Rum-
baugh. The Objectory Development
Process. Addison-Wesley, 1998.

4. Nageswaran, Suresh. “Test Effort
Estimation Using Use Case Points.”
June 2001 <www.cognizant.com/cog
community/presentations/Test_
Effort_Estimation.pdf>.

5. Anda, Bente. “Improving Estimation
Practices By Applying Use Case
Models.” June 2003 <www.cognizant.
com/cogcommunity/presentations/
Test_Effort_Estimation.pdf>.

6. Anda, Bente, et al. “Effort Estimation
of Use Cases for Incremental Large-
Scale Software Development.” 27th
International Conference on Software
Engineering, St Louis, MO, 15-21 May
2005: 303-311.

7. Carroll, Edward R. “Estimating
Software Based on Use Case Points.”
2005 Object-Oriented, Programming,
Systems, Languages, and Applications
(OOPSLA) Conference, San Diego,
CA, 2005.

About the Author

Roy K. Clemmons is an
employee of Diversified
Technical Services, Inc.
He has more than 20
years experience in soft-
ware design and develop-

ment. Currently, he is contracted to the
Retrieval Applications Group at Ran-
dolph Air Force Base, Texas, where he
works on the Virtual Military Personnel
Flight system and the Retrieval Appli-
cations Web site.

Diversified Technical Services, Inc.
403 E Ramsey STE 202
San Antonio,TX 78216 
Phone: (210) 565-1119
E-mail: roy.clemmons.ctr@

randolph.af.mil

Get Your Free Subscription

Fill out and send us this form.

309 SMXG/MXDB 

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:________________________________________________________________________

RANK/GRADE:_____________________________________________________

POSITION/TITLE:__________________________________________________

ORGANIZATION:_____________________________________________________

ADDRESS:________________________________________________________________

________________________________________________________________

BASE/CITY:____________________________________________________________

STATE:___________________________ZIP:___________________________________

PHONE:(_____)_______________________________________________________

FAX:(_____)_____________________________________________________________

E-MAIL:__________________________________________________________________

CHECK BOX(ES) TO REQUEST BACK ISSUES:
OCT2004 c PROJECT MANAGEMENT

NOV2004 c SOFTWARE TOOLBOX

DEC2004 c REUSE

JAN2005 c OPEN SOURCE SW
FEB2005 c RISK MANAGEMENT

MAR2005 c TEAM SOFTWARE PROCESS

APR2005 c COST ESTIMATION

MAY2005 c CAPABILITIES

JUNE2005 c REALITY COMPUTING

JULY2005 c CONFIG.MGT. AND TEST

AUG2005 c SYS: FIELDG. CAPABILITIES

SEPT2005 c TOP 5 PROJECTS

OCT2005 c SOFTWARE SECURITY

NOV2005 c DESIGN

DEC2005 c TOTAL CREATION OF SW
JAN2006 c COMMUNICATION

To Request Back Issues on Topics Not
Listed Above,Please Contact <stsc.
customerservice@hill.af.mil>.

Hard Skills Simulations:
Tackling Defense Training

Challenges Through
Interactive 3-D Solutions

Josie Simpson
NGRAIN Corporation

The defense industry today faces a num-
ber of challenges around skills training,
primarily driven by an increased pace of
operations, the growing need to cross-
train technical personnel to meet mission
objectives, and ever-shrinking training
budgets. Combined, these challenges can
be daunting; but they can be overcome
through the insertion of advanced tech-
nologies in instructional programs. Until

recently, the use of three-dimensional (3-
D) in hard skills training was limited to
high-end applications such as flight simu-
lators. Today, new technologies have been
introduced that remove the traditional
barriers to 3-D, allowing interactive 3-D
to be used in lower-end applications,
including maintenance training. Hard
skills simulations, most notably 3-D vir-
tual equipment, provide an innovative
new way to cost-effectively train students
to standard in less time on maintenance
procedures and repair tasks, while simul-
taneously helping to improve perfor-
mance in the field through on-the-job
training aids. The result is reduced costs
and a higher level of preparedness, ulti-
mately saving lives.

MORE ONLINE FROM CCRROOSSSSTTAALLKK

ThCrossTalk is pleased to bring you this additional article with full text at
<www.hill.af.mil/crosstalk/2006/02/index.html>. 


